
5
Computer vision for hand recognition

5.1
Cameras

A camera, in its everyday meaning, is a device for taking photographs,

which in their turn are 2D representations of a 3D scene in the form of either

1) a raster image file, 2) a printout or 3) a transparent slide. In this work,

we’re mainly interested in digital cameras. They are capable to produce raster

image files (see Section 5.2 for more on digital images), suitable for computer

processing.

Real cameras can be modeled using various mathematical models. In

mathematical terms, a camera model (frequently called camera as well) is

defined as a mapping between the 3D (Euclidean) world being observed and

the resulting 2D image:

camera: 3D scene −→ 2D image

For the purposes of this exposition, one mathematical model in particular

satisfies our needs: the pinhole camera model.

5.1.1
Pinhole camera model

The pinhole camera (Figure 5.1) consists of a hollow box, whose side has

been perforated by a small hole, called pinhole. (Alternative name for pinhole

is optical center, designated by �C in Figure 5.1). Light emanating from the

scene enters the pinhole and gets projected onto the inner surface (screen)

opposite to the hole. The screen has a light-sensitive surface (either an CCD

or CMOS chip in the case of digital cameras, and photographic film in the case

of analog cameras) which enables the camera to record the 3D scene.

Due to the geometry of the image-creating process (which can be easily

understood looking at Figure 5.1), the projected image is reversed (i.e. upside-

down). Also, the smaller the hole is, the projected image is sharper due to the

DBD
PUC-Rio - Certificação Digital Nº 0611939/CA



CHAPTER 5. COMPUTER VISION FOR HAND RECOGNITION 38

Figure 5.1: Pinhole camera, with pinhole (i.e. optical center) at �C

smaller number of light rays falling onto one specific spot in the image plane;

and vice versa, light rays emanating from one particular position in 3D scene

fall on just one spot on the screen. On the other hand, very small pinholes lead

to the aberration of the image because light entering the box starts to suffer

the phenomenon of wave difraction. Also, too small a hole permits just a very

low amount of light energy to enter the box, which leads to exposure times

which are simply too long for many purposes.

Since the projected image is upside down, we sometimes replace the

screen with another (hypothetical) screen between the optical centre �C and

the 3D scene, thus creating a virtual image which has the same orientation as

the 3D scene:

Figure 5.2: Pinhole camera with screen in the front of �C

5.2
Digital images

Digital images we refer to in this work are the so-called intensity images,

two-dimensional discrete arrays of picture elements (also called pixels) with M

rows and N columns, where each of the M × N pixels measure the amount

of visible electromagnetic energy (i.e. light) that fell onto that position at the

moment the image was taken.

An image can also be considered a planar (2D) coordinate system, where

the origin is fixed at the upper-left corner, and where each 2D point (u, v) is

DBD
PUC-Rio - Certificação Digital Nº 0611939/CA



CHAPTER 5. COMPUTER VISION FOR HAND RECOGNITION 39

Figure 5.3: A digital image consisting of 48× 43 pixels

defined by its horizontal distance u from the origin and its vertical distance v

from the origin.

5.3
Mono vision

This section deals with mono-vision, which is a vision obtained using just

one camera. We’ll determine mathematically how a specific 3D point P with

the associated position vector �X = (X, Y, Z) gets projected into a specific 2D

pixel point �u = (u, v) in the raster image.

5.3.1
Relevant coordinate systems

There are four coordinate systems (Figure 5.4) involved in the computa-

tion of the 2D raster image of a 3D scene:

1. World coordinate system (WCS) — this is our global, absolute 3D

system. In this work, WCS is fixed on the table, so that +x points to

the right, +y away from the user and +z up. We designate the origin of

WCS by O.

2. Camera coordinate system (CCS) — this 3D coordinate system is

fixed so that its origin Oc is at the camera’s optical centre. No imagine

that you’re peeping through the camera’s optical finder. In this case, +x

is to the right, +y is up, and +z points to the user.

DBD
PUC-Rio - Certificação Digital Nº 0611939/CA



CHAPTER 5. COMPUTER VISION FOR HAND RECOGNITION 40

Figure 5.4: Coordinate systems in the world–camera–projection–raster image
chain.

3. Projection plane coordinate system (PCS) — this is a 2D coordi-

nate system embedded into the projection plane. The origin Op is fixed

at the orthogonal projection of the camera’s optical centre onto the pro-

jection plane, +x axis points right, and +y points up.

4. Raster image coordinate system (ICS) — this is a final 2D coor-

dinate system, which expresses the position of a point in PCS relative

to the grid defined by the rectangular array of pixels. In this work, the

origin o = (ox, oy) of ICS is fixed at the upper left corner of the image

produced in PCS. The +x points therefore to the right, and +y points

down.

5.3.2
Transformations between coordinate systems

As we have seen, we need to deal with four coordinate systems: WCS,

CCS, PCS and ICS. Therefore, we have to consider three coordinate transfor-

mations between (three of) them, in order to understand mathematically how

the 2D raster image forms from the 3D scene:

1. CCS ←− � WCS

2. PCS ←− � CCS

3. ICS ←− � PCS

Schematically:

Raster image (2D) ←−� Projection plane (2D) ←−� Camera (3D) ←−� World (3D)

or equivalently:

ICS←− � PCS←− � CCS←− � WCS

DBD
PUC-Rio - Certificação Digital Nº 0611939/CA



CHAPTER 5. COMPUTER VISION FOR HAND RECOGNITION 41

or, using coordinates:

(u, v)←− � (up, up)←− � (Xc, Yc, Zc)←− � (X, Y, Z)

CCS ←− � WCS

Here, 3D world (i.e. expressed in WCS) coordinates (X, Y, Z) are being

re-computed as 3D camera coordinates (Xc, Yc, Zc) (i.e. CCS coordinates).

Let P be a 3D point, �X = (X, Y, Z) its representation in WCS, and �Xc =

(Xc, Yc, Zc) be the presentation (i.e. coordinates) of P in CCS. It holds:

�Xc ←− �
�X

�Xc = R �X + �t


Xc

Yc

Zc


 =




r11 r12 r13

r21 r22 r23

r31 r32 r33







X

Y

Z


 +




t1

t2

t3




where R is an 3× 3 rotation matrix that rotates WCS relative to CCS (i.e. its

columns are coordinates of the unitary vectors that make up a base in WCS,

relative to the vector base of CCS), and �t = (t1, t2, t3)
τ is the vector

−−→
OcO

(the vector from the camera’s origin to the world’s origin). See Figure 5.5 that

depicts the transition from WCS to CCS.

Figure 5.5: Going from 3D world to 3D camera coordinates (CCS ←− � WCS)

The rotation matrix R and translation vector �t are also called extrin-

sic parameters of the camera. Extrinsic parameters determine the camera’s

DBD
PUC-Rio - Certificação Digital Nº 0611939/CA



CHAPTER 5. COMPUTER VISION FOR HAND RECOGNITION 42

location and orientation relative to WCS.

PCS ←− � CCS

Having now calculated CCS coordinates �Xc = (Xc, Yc, Zc), we can

compute 2D coordinates �up = (up, vp) of the projection of �Xc onto the camera’s

projection plane. We’ll use the pinhole camera model.

�up ←− �
�Xc

(up, vp) =

(
f

Xc

Zc

, f
Yc

Zc

)
(5-1)

For the computation in Eq. 5-1 to take place, we of course must know the value

of f (focal length of the camera, expressed in meters). Parameter f is one of

the so-called intrinsic parameters of the camera.

ICS ←− � PCS

Finally, the projected 2D point �up = (up, vp) can now be expressed

relative to the pixel array grid as a 2D point �u = (u, v). Note that �up = (up, vp)

is expressed in meters, while �u = (u, v) is expressed in pixels.

�u←− � �up

(u, v) =

(
−up

sx

+ ox,−vp

sy

+ oy

)
[

u

v

]
=

[
−up

sx
+ ox

−vp

sy
+ oy

]

For this computation, we must know the values of sx and sy (dimensions of

one sensor element in the CCD/CMOS chip, expressed in meters), and ox and

oy (translation values for the raster image origin). Parameters sx, sy, ox, oy also

belong to the set of intrinsic parameters of the camera.

Composing transformations PCS ←− � CCS and ICS ←− � PCS

Composing transformations PCS ←− � CCS and ICS ←− � PCS we obtain

the transformation ICS ←− � CCS:

ICS←− � PCS←− � CCS

DBD
PUC-Rio - Certificação Digital Nº 0611939/CA



CHAPTER 5. COMPUTER VISION FOR HAND RECOGNITION 43

that is, we go from the 3D camera system CCS to the 2D raster image system

directly:

ICS←− � CCS

(u, v) =

(
− f

sx

· Xc

Zc

+ ox,− f

sy

· Yc

Zc

+ oy

)

If we now define fx = f
sx

and fy = f
sy

we obtain

(u, v) =

(
−fx · Xc

Zc

+ ox,−fy · Yc

Zc

+ oy

)

When working with vision setups, we rarely get to know focal length f of the

camera exactly (only when we have the camera manufacturer data). Instead,

using calibration techniques (see Section 5.3.3) we usually obtain just fx and

fy (focal lengths expressed in pixels). Using the same calibration techniques

we also obtain ox and oy (expressed in pixels as well), which are coordinates of

the image center (principal point), which is the intersection between the image

plane and the optical axis (line through Oc, perpendicular to the image plane).

Considering this, in this work we frequently ignore PCS and go straight

from CCS (3D camera system) to ICS (2D raster image system). Thus the

pipeline looks like this:

Raster image (2D) ←− � Camera (3D) ←− � World (3D)

or equivalently:

ICS←− � CCS←− � WCS

or, using coordinates:

(u, v)←− � (Xc, Xc, Zc)←− � (X, Y, Z)

5.3.3
Mono-camera calibration

The (mono) camera calibration is a process where all the parameters

of a camera are being determined. The parameters include intrinsic camera

parameters and extrinsic camera parameters.

– Intrinsic camera parameters:

– fx ∈ R, fy ∈ R: two focal lengths in the x- and y-direction (in pixels)

– ox ∈ N, oy ∈ N: two integer x- and y-coordinates of the image center

(in pixels). Note that when we are working with subpixel precision,

we have ox ∈ R, oy ∈ R (in pixels, but we use real numbers here)

DBD
PUC-Rio - Certificação Digital Nº 0611939/CA



CHAPTER 5. COMPUTER VISION FOR HAND RECOGNITION 44

– α = sy

sx
: pixel aspect ratio (pixel deformation)(dimensionless)

– k1, k2: two radial distortion coefficients (dimensionless)

– Extrinsic camera parameters:

– rotation matrix R (dimensionless) and

– translation vector �t (in meters).

While there exist many calibration techniques, i.e. methods to extract

both the extrinsic and intrinsic camera parameters listed above, we focus on

the method by Zhang [19].

5.3.4
Zhang’s camera calibration method

Zhang’s camera calibration method [19] enables the user to obtain intrin-

sic and extrinsic camera parameters taking several (at least two) snapshots of a

planar pattern (for example, a checkerboard consisting of a grid of alternating

black and white squares, or any other planar pattern with easily distinguish-

able features). For example, Figure 5.5 shows a camera observing an 8 × 7

checkerboard pattern.

The method first finds an initial solution using a closed-form expression.

This solution is then refined using the Levenberg-Marquardt algorithm, which

is a nonlinear minimization method.

5.4
Stereo vision

Stereo vision, or stereopsis, is the main mechanism through which humans

perceive spatial depth. In stereopsis, a 3D point P gets projected into two

different locations on both eyes’ retinas. The difference between these two

locations, called stereo disparity, is then processed by the brain which, in

conjuction with other factors (like for example eye-to-eye distance), estimates

the depth coordinate of the point P .

In the computational context, stereo vision is obtained using two cameras.

We say that two cameras, when employed to compute stereo, make up a stereo

rig. Just like a in the case of mono vision, stereo vision has its own geometry.

Figure 5.6 shows the geometry of a stereo rig.

DBD
PUC-Rio - Certificação Digital Nº 0611939/CA



CHAPTER 5. COMPUTER VISION FOR HAND RECOGNITION 45

Figure 5.6: Stereo rig. If the two cameras take a snapshot at the same instant,
the two photos make a stereo pair of photos.

5.4.1
Stereo 3D reconstruction

The expression “stereo 3D reconstruction” refers to the process of de-

termining the 3D structure and 3D position of an observed object, given a

number N of correspondences {(�u1, �u
′
1), (�u2, �u

′
2), . . . , (�uN , �u′

N)} in the left and

right image of the stereo input stream.

Reconstruction based on triangulation

Triangulation is a method of determining the position of a fixed point

using another two fixed points a known distance apart. Therefore, triangulation

is a stereo 3D reconstruction of just one corresponding pair. Having one

correspondence (�u1, �u
′
1) of one observed (photographed) point feature P , we

can use triangulation to determine the 3D location (X, Y, Z) of this feature.

Supposing that a point P is visible in both images, and that we know the

pixel coordinates �u and �u′ of both projections of the point P in both images,

we can easily compute two rays in space — one ray passing through the left

camera’s optical centre and �u, and the second ray through the right camera’s

optical centre and �u′. The triangulation problem is then equivalent to finding

the intersection of these two rays in space.

However, there exist several problems with this approach. If we knew

�u, �u′ and camera’s parameters exactly, of course we would be able to recover

P easily, using formulas of elementary vector algebra. The problems are the

following:

– Floating-point arithmetics errors — since we use floating-point

arithmetics (because all the underlying parameters are actually contin-

uous physical values), we induce numerical errors to the triangulation

DBD
PUC-Rio - Certificação Digital Nº 0611939/CA



CHAPTER 5. COMPUTER VISION FOR HAND RECOGNITION 46

process. As a consequence of this, the two rays can never intersect ex-

actly.

– Measurement errors — we can never measure �u, �u′ and determine

camera’s parameters exactly. As a consequence, we can never compute

the intersection of two rays exactly.

Due to the aforementioned problems, which leads to the fact that the

two rays do not cross in space, we must find other solutions to determining 3D

point �X using triangulation. An overview of available triangulation methods

can be found in [20]. In this work, we will mention (and later implement)

two triangulation methods: a simple one, called Mid-point triangulation

method, and the optimal one (under the assumption of Gaussian noise), called

Polynomial triangulation method.

Figure 5.7: Triangulation. Knowing 3D positions of optical centers �C, �C ′,
focal lengths f, f ′ and 2D positions �u, �u′, we can determine 3D position �X
using various triangulation methods (for example, mid-point and polynomial
triangulation methods).

Mid-point triangulation method This is probably the simplest and fastest

possible triangulation method, however with serious shortcomings (see [20]).

Suppose that the corresponding (matched) 2D points are �u = (u, v) and

�u′ = (u′, v′), i.e. �u, �u′ are images of an 3D point �X = (X, Y, Z) in the left and

right image. The point �X lies at the interesection of two rays: first ray from C

through �u and the second ray from C ′ through �u′ (see Figure 5.8). However,

since the two rays do not actually meet in space due to the aforementioned

issues, we can only approximate the intersection of two rays. In this method,

mid-point method, we approximate this intersection with the point that lies

at the minimum distance to both rays.

To extract �X, suppose first that we work in the left camera’s coordinate

system. Let r, r′ be two rays:

DBD
PUC-Rio - Certificação Digital Nº 0611939/CA



CHAPTER 5. COMPUTER VISION FOR HAND RECOGNITION 47

Figure 5.8: Mid-point triangulation method, which finds the point �X as the
point that lies at the minimum distance to both rays: first ray from C through
�u, and the second ray from C ′ through �u′.

– r = {α · �u | α ∈ R} the ray through C and �u, and

– r′ = {�̂t + β · R̂τ · �u′ | β ∈ R} the ray through C ′ and �u′.

. . . where R̂ = R′Rτ , and �̂t = �t − R̂τ�t′. Let �a be a vector orthogonal to both

r and r′. Point �X is now in the middle of the segment parallel to �a that joins

both rays r and r′.

Now let �Y = α0 · �u one endpoint of the segment, and �Z = �̂t + β0 · R̂τ · �u′

the other endpoint of the segment. Parameters α0 and β0 are now computed

solving the following system of linear equations:

α0�u− β0R
τ �u′ + γ(�u× (Rτ �u′)) = �t

The desired 3D point �X is now simply

�X =
�Y + �Z

2

Polynomial triangulation method This method [20] gives an optimal global

solution to the triangulation problem. Further, the algorithm employed is non-

iterative and simple in concept, has low computation requirements and has

superior performance compared with other methods.

Formulated as a least-squares minimization problem, the method com-

putes image points û, û′ such that

d(u, û)2 + d(u′, û′)2 → min, û′τFû = 0

where d(∗, ∗) is the Euclidean distance function and F the fundamental matrix

of the stereo rig. Assuming Gaussian error distribution (tracking of u, u′ is noisy

because of digitization errors), the points û, û′ are the most likely values for

DBD
PUC-Rio - Certificação Digital Nº 0611939/CA



CHAPTER 5. COMPUTER VISION FOR HAND RECOGNITION 48

true image correspondences. Since the corresponding rays through û, û′ meet

exactly in 3D space, we can now find easily x (the global position of the hand in

the workspace) using other triangulation methods, for example the mid-point

triangulation described above in Section 5.4.1.

5.5
Color spaces

Since we are interested in visual hand recognition, and human hand is

of course covered with skin, we also have to consider the color of human skin

when trying to detect a hand in an image. According to [21], human skin color

can be conveniently represented and processed in the following color spaces:

– Basic color spaces (RGB, normalized RGB, CIE-XYZ) — these are the

so-called “default” color spaces, because they are ubiquitous and their

properties are well know and defined.

– Perceptual color spaces (HSI/HSV/HSL, TSL) — the HSI/HSV/HSL

model models “perceptual” qualities like hue, saturation and intensity

(also called brightness, lightness or value). The TSL model quantifies

tint (hue with white added), saturation and lightness.

– Orthogonal color spaces (YCbCr, YIQ, YUV, YES) — these reduce

the redundancy present in the RGB model, and model the color with

as statistically independent components as possible. Luminance and

chrominance components are separated, therefore these spaces are the

favorable choice for skin detection.

– Perceptually uniform color spaces (CIE-Lab, CIE-Luv) — in these

spaces, the luminance L and the chroma ab or uv are obtained through a

non-linear mapping of XYZ coordinates. The advantage of these spaces

is that they can represent color in a perceptually uniform way. The

downside is that computing CIE-Lab, CIE-Luv colors is computationally

expensive.

– Other color spaces — color ratios like R/G and R/G + R/B + G/B.

5.6
Human skin modeling

Human skin detection can be viewed as a two-class classification problem

— given an image I in color space C, and given a pixel I(x, y) in image I at

position (x, y) with color c ∈ C, a detector fC outputs 1 if the pixel I(x, y) is

a skin pixel, and 0 otherwise (a non-skin pixel). The domain D(f) of classifier

DBD
PUC-Rio - Certificação Digital Nº 0611939/CA



CHAPTER 5. COMPUTER VISION FOR HAND RECOGNITION 49

f is therefore the color space C, and its range R(f) is the set {0, 1}:

fC : C → {0, 1}

fC(c) =

{
1 if c deemed a skin color

0 otherwise

Again according to [21], human skin detection methods can be classified

as:

– Explicit skin-color space thresholding — skin colors of different

individuals cluster in a small region in color space. This method thus

simply marks this region; if a pixel falls within this region, it is deemed

a skin pixel. Has good skin detection rates, at the expense of high false

positives. Simple and fast, but with many limitations (e.g. illumination

must be controlled, threshold values differ for color spaces and different

illumination levels, is less accurate in case of shadows, and in case the

background contains objects with colors similar to skin color). Because of

the limitations, this approach is usually complemented with a dynamic

adaptation approach.

– Histogram model with naive Bayes classifiers — here a 2D or

3D color histogram is used to represent skin tones. This method is

stable, unaffected by occlusions and changes in view, and can be used

to differentiate a large number of objects. Slightly better than GMM or

MLP (see below). However, needs a very large training set, and has high

storage requirements.

– Gaussian classifiers (SGM, GMM) — Again, since skin colors of

different individuals cluster in a small region in color space, we can model

this skin distribution by a multivariate normal Gaussian distribution

(this is the so-called Single Gaussian Model — SGM) or by a sum of

individual Gaussians (the so-called Gaussian Mixture Models — GMM).

This approach generalizes well, with less training data, and has a small

storage requirements. Slightly inferior to histograms with naive Bayes

classifiers, however GMMs are popular because they can generalize very

well with less training data.

– Elliptical boundary model — Has performance slightly better than

GMM, and the computational complexity is as simple as training a SGM.

The downside is that it performs binary classifications only.

– Multi-layer perceptron (MLP) — a type of feed-forward neural net-

work. Outperforms (together with Bayesian classifiers) Gaussian models

DBD
PUC-Rio - Certificação Digital Nº 0611939/CA



CHAPTER 5. COMPUTER VISION FOR HAND RECOGNITION 50

and Explicit skin-color space thresholding. Has very low storage require-

ments.

– Self-organizing map (SOM) — a type of neural network. Consistently

better than GMMs.

– Maximum entropy (MaxEnt) — a statistical method for estimating

probability distributions from data.

– Bayesian network (BN) — directed acyclic graphs that allow efficient

and effective representation of the joint probability density functions.

5.7
Image features

Detecting image features in an image is a low-level but fundamental task,

prerequisite for almost any higher-level computer-vision algorithm, like for

example camera calibration, line detection or tracking. The term local feature

designates a local property of the image, for example an edge, cross, closed

curve (ellipse, or circle), KLT feature or SIFT feature (more will be said about

KLT and SIFT in the text that follows).

If a feature is located in a region of an image, we call this region a “local

interest region”. And taking this local interest region into consideration, we

are then able to compute a “local descriptor”. Many types of descriptors have

been proposed so far in the literature. As a rule, local descriptors must be

invariant to image scale and rotation. In further text, terms “local descriptor”

and “local feature” are considered synonymous.

From the viewpoint of vision-based tracking (see also Section 5.11 on

page 56), features represent “hooks” onto which we can latch and observe

their displacements from frame to frame. By tracking these features, therefore,

we can track the objects to whom these features belong to. See Figure 5.9.

Figure 5.9: Tracking an object by tracking its features

The positive aspects of local features are:

DBD
PUC-Rio - Certificação Digital Nº 0611939/CA



CHAPTER 5. COMPUTER VISION FOR HAND RECOGNITION 51

1. Abundance — even tiny objects can give rise to a large number of

features.

2. Computationally cheap — local features are generally cheap to com-

pute, which leads, in general, to real-time tracking performance.

3. Robustness — features are robust to: occlusion, noise, small changes in

viewpoint, and changes in illumination.

Some representative classes of features, listed from the oldest to the

newest work, include:

– Corners (Harris detector) — the basic idea is that shifting a small

window (for example, of 9 × 9 pixels) around a pixel should result in

large change in intensity, in any direction [22].

– KLT features — Kanada-Lucas-Tomasi (KLT) features, also called

“Good features to track”, are “good” in a well-defined formal, math-

ematical sense. In this approach, an image feature is deemed a KLT

feature only if it can be tracked in a simple, fast and accurate fashion.

See Appendix C on page 116 and reference papers [23] [24] [25] .

– SIFT features — SIFT stands for “Scale Invariant Features Trans-

form”. This method maximizes difference of Gaussians over space and

scale [26]. Note that this method has been patented.

– SURF features — SURF stands for “Speed Up Robust Features”, and

is a scale- and rotation-invariant interest point detector and descriptor. It

approximates or outperforms earlier methods with respect to repeatabil-

ity, distinctiveness and robustness, but can be computed and compared

much faster [27].

Note that there exist many more types of local features. For the performance

evaluation of various types of features, please refer to [28], which shows that

SIFT outperforms all methods. However note that the publication date of

this performance evaluation [28] is in 2005, while the SURF paper [27] was

published one year later (in 2006) and claims performance superior to SIFT.

DBD
PUC-Rio - Certificação Digital Nº 0611939/CA



CHAPTER 5. COMPUTER VISION FOR HAND RECOGNITION 52

5.8
Hand detection

This is the process whereby a hand is detected (localized) in an image,

using computer vision techniques. Basically, this process tries to answer the

question “Is there a hand in this image?”. (Is the answer is affirmative, then

this process also returns the location of the hand in the image.) There exist

various approaches to detecting and localizing a hand in an image:

– Human skin detection — human skin has a characteristic color

signature which can be used to detect it (the skin) in an image.

Pros: skin color is surprisingly uniform (race - white/yellow/red/black,

or being suntanned doesn’t matter, since the hue does not change), so

color-based detection is achievable.

Cons: other skin-colored object (like for example user’s face, or other

users’ hands and/or faces, and so on) can enter into the image, and thus

confuse the detection process. Workarounds would include 1) restricting

the work area so that it contains hands only, or 2) to use hand’s salient

and discriminating features to dinstinguish it from other skin-colored

objects.

Other potential problem is insufficient illumination, whereby too dark

a workspace prevents efficient detection of human skin’s characteristic

hue. Potential workaround would include using supplementary infrared

cameras.

– Motion detection — human hands usually move at greater speeds

compared with other object in the scene.

Pros: when the background is static, motion-based detection is a practi-

cal and fast method to detect hands.

Cons: does not work when either the camera or parts of the background

move, which is frequently the case.

– Classifier-based detection — this is a machine-learning approach. A

classifier is a mapping f : X → Y from a feature space X to a discrete

set of labels Y . Classifiers can be seen as decision systems which accept

values of some features or characteristics of a situation as input and

produce as an output a discrete label related to the input values.

One representative of this approach is the Viola-Jones method [29], which

also uses AdaBoost [30] in order to construct so-called “strong classifiers”

from a combination of “weak classifiers”. Viola-Jones method can be

DBD
PUC-Rio - Certificação Digital Nº 0611939/CA



CHAPTER 5. COMPUTER VISION FOR HAND RECOGNITION 53

applied to any type of object; effectiveness at detecting specifically hands

has also been investigated [31].

Pros: fast, high detection accuracy, very large and very complex set of

features possible (although in this work we are interested in hands only),

robust (works under wide range of conditions: variations of illumination,

scale, pose and camera).

Cons: a learning process (sometimes a very prolonged one) is needed.

However for hands this learning process can be significantly reduced [31].

– Hybrid detection methods — here two or more approaches are being

combined, in order to increase the robustness and reliability of hand

detection. For example, skin detection can be combined with motion

detection. Or, Viola-Jones method can be combined with skin detection

[31], and so on.

Pros: increased detection rate.

Cons: increased processing load.

Since Viola-Jones detection method has been used in the prototype

application (see Chapter 6, page 58), technicalities are given in detail in

Appendix B on page 109.

5.9
Hand segmentation

After the hand has been detected (localized) in the image, the hand must

be segmented i.e. the background must be extracted from the region containing

hand’s image. In other words, pixels belonging to the hand must be separated

from all the remaining pixels. Approaches and techniques:

– Thresholding — here a special auxiliary black & white image is created

for each frame, whereby pixels belonging to the hand are white, and all

the rest are black. Now combining this auxiliary image with the original

image (utilizing the binary operation AND), the pixels belonging to the

hand are being filtered out as they are, while all the remaining pixels are

filtered out/set to 0 (black).

– Morphological functions — functions like “dilate” and “erode” that

work on black & white images (like the auxiliary one obtained through

thresholding). Dilate operation causes objects to grow in size (get

“thicker”), and erosion causes elements to shrink (get “thinner”). These

functions serve to “improve” the hand region ultimately segmented from

the image.

DBD
PUC-Rio - Certificação Digital Nº 0611939/CA



CHAPTER 5. COMPUTER VISION FOR HAND RECOGNITION 54

– Blobs — here contiguous regions of the image are being identified and

labelled. The region (“blob”) which contains the location of detected

hand is now the region depicting the hand.

5.10
Hand pose estimation

Now, given the extracted (segmented) hand region (blob), we can proceed

with estimating the parameters determining the hand’s posture in 3D space.

See Figure 5.10 for a classification of pose estimation approaches.

Figure 5.10: Taxonomy of hand pose estimation approaches

Partial hand pose estimation

Partial hand pose estimation relies on hand models with reduced number

of d.o.f., therefore it does not try to recover the full set of 26 d.o.f. As such

it relies on extracting appearance-based features like fingertips, orientation of

fingers, global position of the hand, contours (sillhouettes), contour centroids,

and curvature in order to reconstruct directly (i.e. without the help of a virtual

3D hand model) the pose of the partial model.

Full d.o.f. hand pose estimation

Differently from the partial hand pose estimation, the full d.o.f. hand pose

estimation does not try to compute pose directly from extracted features, but

instead uses the extracted features in order to execute a search in the parameter

space, so that a certain type of error can be minimized.

DBD
PUC-Rio - Certificação Digital Nº 0611939/CA



CHAPTER 5. COMPUTER VISION FOR HAND RECOGNITION 55

– Model-based pose estimation — During the search, the 3D hand

model (collocated into a certain position and certain orientation in vir-

tual 3D space) is being projected onto a 2D image plane, and features

extracted from this image plane are then compared with features ex-

tracted from the source video image. Can be further subdivided into:

– Single-hypothesis model-based pose estimation — this one

is based on restricted (local) search and retains only one, the best,

estimate at each input image. The search is being done either a)

optimization methods, or b) applying physical forces on the 3D

hand model.

– Multiple-hypotheses model-based pose estimation — retains

several hypotheses about the hand pose. If one estimate gives a too

big an error, the next best one is used. A big majority of this type

of pose estimation utilizes Bayesian filtering or derivation thereof,

specifically a) particle filters, b) tree-based filters, c) Bayesian

networks, d) template database search, e) other approaches.

– Single-frame pose estimation — in this approach just one image

(or, in the case of multiple-camera setups, the set of images taken

at the same instant) is being used. Therefore, past parameter states

are not being used in order to restrict the scope of the search — the

whole (global) parameter space is being searched. An obvious advantage

is that no analysis of past states is necessary, and disadvantage that

the complete (and therefore computationally more expensive) search in

parameter space must be made, although there may be no real need for

that. Approaches:

– Classifiers — please refer to Section 5.8. Classifiers can also work

for pose estimation, not just detection, because classes of training

data can be tagged by a full, predetermined set of pose data. So

when a classifier detects a hand pattern in the image, we will

automatically know the pose too. For this to work, a virtual 3D

hand model must be used in order to produce training data (because

it’s practically impossible to determine pose data from pre-existing

photos of real hands).

– Database indexing — a large number of training samples (i.e.

images of the hand model projected in every possible way) can

be saved into a database, and then indexed in a special way.

The database is then searched for in order to retrieve the nearest

neighbour of the input image.

DBD
PUC-Rio - Certificação Digital Nº 0611939/CA



CHAPTER 5. COMPUTER VISION FOR HAND RECOGNITION 56

– 2D-3D mapping — this is another learning approach. In a nut-

shell, here certain features are being computed from the (2D) input

image (like moments of the hand contour, invariant to the rotation

and scaling), and the mapping from this set of 2D features to the

set of 3D poses is then being taught to a special machine-learning

architecture named “Special Mapping Architecture”.

– Inverse kinematics — here the position of fingertips is being

used in order to compute joint angles. This reduces the problem

to a typical inverse kinematics problem, known for example in the

field of robotics. The difficulties in this approach are a) to detect

fingertips reliably, and 2) to solve the inverse kinematics problem

(i.e. computing the joint angles) correctly.

5.11
Hand tracking

Tracking is the process of estimating the position of a tracked object,

taking its previous position into consideration.

Since the hand is an articulate 3D structure, we can choose to track

the hand either in its original 3D space (in this case we say that we employ

model-based hand tracking), or in the 2D projection image plane (in this case

we employ the so-called appearance-based tracking). We can also talk about

hybrid tracking, a recent mode of tracking which combines elements of model-

and appearance-based tracking.

5.11.1
Appearance-based hand tracking

Various tracking methods in this class differ in what cues they use

for tracking — some, for example, use just one cue like skin color or hand

motion, and another use a combination of cues (for example, skin color and

motion). For example, in Camshift [32] just the hand’s color is being used

as a cue; in CONDENSATION [33], hand contours + hand motion, and in

ICONDENSATION [34] hand contours + hand motion + skin color; in “Flock

of Features” [35] a combination skin color + KLT features [25], [24] (see Section

5.11 for more on KLT features).

For example, KLT tracking takes advantage of the fact that images in a

video sequence are usually similar to each other. Due to the small time interval

between the frames, objects being tracked haven’t had the time to travel large

distances, or the shift (translation vector) between an object’s images in the

previous and current image is small. This fact leads to an algorithm which

DBD
PUC-Rio - Certificação Digital Nº 0611939/CA



CHAPTER 5. COMPUTER VISION FOR HAND RECOGNITION 57

extracts this translation vector thus tracking the object. For technical details

on tracking based on KLT features, please refer to Appendix C on page 116.

5.11.2
Model-based hand tracking

Here the back-projection of a predefined 3D parametric hand model

is being matched against the input video frame. At each frame, extracted

features are being compared with the current 3D model, and the matching

error computed; if the error is too large, the 3D model is adjusted in the

attempt to decrease the error — if the error is still too big, we repeat the

model adjustment, otherwise we found a good matching and the tracking was

successful. Examples include the classic DigitEyes system [5], where a 27-d.o.f.

hand model is being tracked.

5.11.3
Hybrid hand tracking

Here elements of both the model-based and appearance-based tracking

are combined in an effort to get the best of two worlds. Shimada et al in [36] and

Athitsos and Sclaroff in [37] synthesize a large number of 2D views of a software

3D hand model, and tag each of these views by the corresponding, exact hand

pose vector. After this preprocessing step, appearance-based matching methods

are used to process real images.

DBD
PUC-Rio - Certificação Digital Nº 0611939/CA




